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Abstract. We study the mixing and the kinetic equilibration of projectile and target nucleons in relativistic
heavy-ion collisions in the energy regime between 150 AMeV and 2 AGeV in a coupled-channel BUU
(CBUU) approach. We find that equilibrium in the projectile-target degrees of freedom is in general not
reached even for large systems at low energy where elastic nucleon-nucleon collisions dominate. Inelastic
nucleon excitations are more favorable for equilibration and their relative abundance increases both with
energy and mass. Experimentally, the projectile/target admixture can be determined by measuring the
degree of isospin equilibration in isospin asymmetric nuclear collisions. For one of the most promising
systems currently under investigation, 96

44Ru + 96
40Zr, we investigate the influence of the equation of state

and the inelastic in-medium cross section.

PACS. 25.75.+r Relativistic heavy-ion collisions

1 Introduction

The aim of relativistic nucleus-nucleus collisions is to pro-
duce hot and dense nuclear matter for sufficiently large
space-time volumes and to probe the properties of hadrons
in a different environment than the vacuum [1–6]. From
particle distributions, spectra and flow one can infer, e.
g., on in-medium cross sections and the nuclear equation-
of-state (EOS). Experimentally, the properties of the hot
and dense part of the system are conventionally described
by a temperature T , baryon chemical potential µB , and
expansion velocity β characterizing the system at freeze-
out via the relative abundancy or ratio of hadrons [7,8].
However, if this thermal and chemical equilibrium is ac-
tually achieved in the systems studied experimentally is
quite a matter of debate [4,8–11] and requires an analysis
in terms of nonequilibrium transport theory that involves
the relevant hadronic degrees of freedom and is applicable
in a wide domain of bombarding energies. Experimentally,
such equilibration phenomena can be investigated via the
isospin degree of equilibration by using various systems
with different N/Z ratios. This technique has been used
especially at low bombarding energies (≤ 50 AMeV [12])
and is now being used also at higher energies up to the
1.5 A GeV range at the SIS [9]. For a recent review on the
low energy studies we refer the reader to [13].

In this work we will investigate systematically the
degree of isospin equilibration in nucleus-nucleus colli-
sions from 150 AMeV to 2 AGeV. The time evolution of
the systems we describe within the coupled-channel BUU
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(CBUU) transport approach [14] which is briefly described
in Sect. 2. In Sect. 3 we analyse the dependence on the sys-
tem mass and beam energy as well as on the centrality of
the reaction and compare to related simulations for equili-
bration phenomena in a finite box with periodic boundary
conditions, which allows to determine equilibration times
explicitly. Detailed predictions for the total charge ratio
for the system 96

44Ru + 96
40Zr at 400 AMeV and 1.5 AGeV

– which are presently being studied experimentally at the
SIS – follow in Sect. 4 while a summary and a discussion
of open problems is given in Sect. 5.

2 The CBUU-model

For our present study we employ the CBUU-transport-
model [14] to describe the time evolution of relativistic
heavy-ion collisions. In this approach, apart from the nu-
cleon, all nucleon resonances up to masses of 1.95 GeV/c2

are taken into account as well as the mesons π, η, ρ and
σ, where the σ-meson is introduced to describe correlated
pion-pairs with total spin J = 0. For the baryons as well
as for the mesons all isospin degrees of freedom are treated
explicitly. The hadrons included in our model obey a set
of coupled transport equations for their one-body phase-
space distributions fi(r,p, t) [15–18]:
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The l.h.s. of eq. (1) represents the relativistic Vlasov-
equation for hadrons moving in a momentum-dependent
field Ui(r,pi) [14], where r and pi stand for the spatial
and momentum coordinates of the hadrons, respectively.
Note, that all space arguments are equal since the col-
lision term in (1) is local. In our model the mesons are
propagated as free particles, i.e. Ui(r,pi) ≡ 0; this has
been shown to be a valid approximation at least for π and
η mesons [19] whereas the in-medium properties of the
ρ-meson are heavily debated [6].

The r.h.s. of eq. (1) describes the changes of fi(r,pi, t)
due to two-body collisions among the hadrons and two-
body decays of baryonic and mesonic resonances. The in-
medium collision rate is represented by v12

dσ12→34
dΩ , where

σ denotes the free cross section and v12 is the relative
velocity between the colliding hadrons in their center-of-
mass system. The cross sections for the different channels
are chosen to reproduce the NN elementary 1π-, 2π-, η-
and ρ-production cross sections. Taking elastic collisions
only, v12

dσ12→34
dΩ equals v34

dσ34→12
dΩ ; in case of inelastic col-

lisions we factorize the N + N → N + Resonance cross
section into (matrix element × phase space factor) and
use these matrix elements for the determination of the
backward reaction [20] thus avoiding the usual detailed
balance prescriptions. For the most important nucleonic
resonance, the ∆(1232), we use a parametrization in line
with the result of an OBE model calculation by Dimitriev
and Sushkov [21].

In eq. (1), f̄i = 1−fi (i = 1, .., 4) are the Pauli-blocking
factors for fermions. In the collision integrals describing
two-body decays of resonances one has to replace the prod-
uct (relative velocity × cross-section × f2) by the cor-
responding decay rate and introduce the proper fermion
blocking factors in the final channel. The factor g in eq. (1)
stands for the spin degeneracy of the particles participat-
ing in the collision whereas

∑
2,3,4 stands for the sum over

the isospin degrees of freedom of particles 2, 3 and 4.
We include the following elastic and inelastic baryon-

baryon, meson-baryon collisions and meson-meson colli-
sions:

NN ←→ NN

NN ←→ NR

NR ←→ NR′

NN ←→ ∆(1232)∆(1232)
R ←→ Nπ

R ←→ Nππ

= ∆(1232)π, N(1440)π, Nρ, Nσ
N(1535)←→ Nη

NN ←→ NNπ

ρ←→ ππ (p-wave)
σ ←→ ππ (s-wave), (2)

where R and R′ represent the baryonic resonances [14].
For the NN → ∆∆ reaction we use the parametrization
of Huber and Aichelin [22]; NN → NNπ is an s-wave con-
tribution to the total pion production cross section below
the Delta resonance.

The mean field U entering the l.h.s. of eq. (1) is of the
MDYI-type as proposed by Welke et al. [23–25]
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This ansatz enables to guarantee energy conservation since
it can be derived from a potential energy density func-
tional. The parameters of the potential U are chosen to
match the requirements

E

A

∣∣∣∣
ρ0

= −16 MeV,
∂E

∂ρ
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ρ0

= 0, K = 210|260|380 MeV,

U(E = 300 MeV) = 0 , and U(p =∞) = +32 MeV. (4)

These constraints we derive from the results of the micro-
scopic calculations by Wiringa et al. [26,27] with Hamilto-
nians required to describe NN scattering data, few body
binding energies and nuclear matter saturation proper-
ties. Best agreement to [27] over the whole density regime
of 0.1 to 0.5 fm−3 would be achieved using a compress-
ibility K ' 230 MeV, however, we fit the three different
compressibilities denoted in (4) as soft, medium and hard
equation of state (EOS). Additionally, we introduce an
asymmetry potential Usym, depending only on the densi-
ties of protons and neutrons

Usym = D
ρp − ρn
ρ0

τz , (5)

with D = 30 MeV and τz = ±1 for protons and neutrons,
respectively. With the help of this potential we are able to
reproduce the isospin and mass dependence of the binding
energy of nuclei correctly [28]. However, we find the effects
of different binding energy and asymmetry potential to
be negligible for the energy range (E/A ≥ 400 AMeV)
considered here.

The baryons and mesons are represented by testparti-
cles and (1) is solved numerically in the parallel ensemble
algorithm. The particles are propagated according to

dri(t)
dt

=
pi
Ei

+∇p U(ri, pi(t))

dpi(t)
dt

= −∇r U(ri, pi(t))− qi∇VC(ri), (6)

whereas for the collisions the Kodama-algorithm is used
requiring b < bmax =

√
σ/π in addition to b=minimal in

the current timestep [29].
This model has been shown to adequately describe

pion spectra [14], pion multiplicities [20] as well as
Coulomb effects on charged pion spectra [30].

3 Equilibration in heavy-ion collisions

Within the CBUU model outlined in the previous sec-
tion we first investigate the isospin equilibration as a func-
tion of the system size and incident energy. Later we will
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focus on the difference between the ’true’ equilibration
around the symmetry axis of the system and the experi-
mentally accessible signal which is affected also by surface
effects and reaction centrality. Note, that the term ’equi-
libration’ in this work does not imply thermal or chemical
equilibrium; equilibrium here means the total isotropy of
the baryonic isospin distribution. This charge isotropy is
thought to be synonymous to a total mixture of target
and projectile nucleons.

We have chosen 58
28Ni + 58

28Ni (with a total mass num-
ber of 116) as a representative for a lighter system and
197
79 Au + 197

79 Au (with a total mass number of 394) as a
heavy system. The experimentally investigated combina-
tion 96

44Ru + 96
40Zr [9] which we refer to with its total mass

number of 192 is inbetween these two and will be consid-
ered in Sect. 4. As the combinations Ni+Ni and Au+Au
consist of reaction partners of equal isospin, we will di-
rectly use the normalized ratio of target over projectile
nucleons as a measure for the isospin mixture of the sys-
tem. Note, that in the transport approach each hadron
trajectory can be traced back to the incident projectile
and target. Isospin equilibration or system admixture can
be analysed in the full phase space at every time.

For relative comparison we will also perform calcula-
tions in a finite box with periodic boundary conditions
using two shifted Fermi spheres with given N/Z ratio
as initial condition. The relative momentum shift and
N/Z ratio is uniquely determined by the projectile-target
combination and bombarding energy, respectively. These
“infinite nuclear matter” studies allow to investigate the
time scales for kinetic and chemical equilibration for times
t → ∞, whereas any heavy-ion reaction is limited by the
total interaction time.

3.1 Mass and energy dependence

Figure 1 shows the rapidity distribution in the final state
of a central Au+Au collision at 150 AMeV. Though the
total rapidity spectrum dN/dy is close to that of a thermal
distribution [10], here compared to a calculation in a box
with periodic boundary conditions and 〈ρ〉 ' 0.9× ρ0 for
t → ∞ (for a discussion of the choice of the box-size see
below), the rapidity distributions of target and projectile
nucleons are still clearly separated in the ’free’ collision (in
the following we will use the expression ’free’ collision for
realistic simulations of nucleus-nucleus collisions) within
our semiclassical phase-space simulation. This separation
of projectile and target nucleons will approximately per-
sist in a fully quantum-mechanical treatment of the re-
action dynamics since only about 1/4 of the NN colli-
sions occur between pairs of identical particles (same spin
and isospin) which cannot be distinguished in the final
state due to the Pauli principle. However, taken as an
approximation for isospin equilibration the distributions
in Fig. 1 show clearly that full target-projectile-mixture
is not reached in this reaction. This “transparency” is
also supported e.g. by the longitudinally elongated event
topologies for Z = 3 fragments as shown in [10].

Fig. 1. Baryon rapidity distribution of a central 150 AMeV
Au+Au collision (solid line) in comparison to the thermal equi-
librium rapidity distribution as calculated in a box with peri-
odic boundary conditions (squares). For the central collision
the rapidity distributions of projectile nucleons (dashed) and
target nucleons (dotted) are displayed separately

Fig. 2. Ratio of target to projectile nucleons in a tube along
the beam direction as defined in Sect. 3.1 as a function of
rapidity for central Au+Au collisions at different bombarding
energies. For 150, 400 and 2000 AMeV error bars are given to
indicate the statistical uncertainty of the result

We now consider – in order to exclude surface effects
– a tube around the beam axis of radius r=1 fm and cal-
culate for each rapidity bin of typically 0.2 × y0 (where
y0 denotes the cms rapidity normalized to the projectile
rapidity in this system) the number of projectile minus
target nucleons and normalize it to the total number of nu-
cleons in this bin. The resulting ratio then varies between
+1 for having only projectile nucleons in one bin and -1
for target nucleons, respectively, and is a direct measure
for the degree of target/projectile mixing or isospin equi-
libration in the system.

This target/projectile ratio is shown in Fig. 2 for cen-
tral Au+Au collisions at different kinetic energies. As al-
ready indicated in Fig. 1, the ratio is clearly different from
zero at low energies. Above about 400 AMeV the Au+Au
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Fig. 3. Same as Fig. 2 for the Ni+Ni system

Table 1. Mean values of the Erat distributions from central
Au+Au collisions, obtained from a gaussian fit with the pa-
rameters x0 and ∆x for offset and width, respectively

Ekin [MeV] x0 ∆x

2000 1.22 0.33
1000 1.50 0.36
400 1.92 0.51
250 1.74 0.50
150 1.71 0.49

system begins to equilibrate and shows even a repulsion
of target and projectile matter at 2 AGeV. This increase
of equilibration in the target/projectile ratio with energy,
however, does not correspond to an increase of stopping
of the system, measured by the quantity Erat, which gives
the transverse energy to longitudinal energy ratio

Erat =
∑
i

(
p2
x + p2

y

)∑
i p

2
z

. (7)

The mean values of the Erat distributions for the Au+Au
systems are shown in Table 1 and indicate that the maxi-
mum stopping is already reached around 400 AMeV inci-
dent energy. Thus the isotropy of the isospin distribution
is not a trivial effect related to the kinetic deceleration of
the nuclei throughout the collision.

A very similar behaviour of the target/projectile ratio
is found for the Ni+Ni system, shown in Fig. 3, besides the
fact that this lighter system never fully admixes. At pro-
jectile rapidity the number of projectile nucleons always
exceeds the number of target nucleons. This is due to the
lower size of the fireball which limits the number of inelas-
tic collisions and is too small for an isospin equilibration
of the Ni+Ni system.

In order to investigate the influence of the size and
temperature of the fireball on isospin equilibration in more
detail we have calculated the equilibration ratio as func-
tion of time for systems in a box with periodic boundary
conditions. The nuclei are initialized on top of each other
in coordinate space and given relative momenta according
to the energy of the reaction. We compare these calcu-

Fig. 4. Evolution of the density in the center of the reaction
zone (solid line) and the collision rate (dotted line) in a central
Au+Au collision at 2 AGeV. The vertical dashed lines indicate
the boundaries of the time interval available for equilibration as
given by the onset of the collisions and the drop of the central
density below 0.5ρ0

lations to the time available for equilibration during the
lifetime of the fireball in a ’free’ collision. The box was
chosen such that the average density lies between 0.9 and
0.7 × ρ0 for Au+Au and Ni+Ni, respectively. This den-
sity was chosen since it corresponds to the central density
at the hadronic freeze-out time [31] and the size of the
box is large enough to expect the evolution of the colli-
sion in the initial phase to be roughly the same as with-
out periodic boundaries. A change of the box-size would,
of course, lead to different internal quantities like tem-
perature and collision rate or measurable quantities like
particle spectra and rapidity distributions. Note, that in
Fig. 1 the broader dN/dy-distribution of the box calcula-
tion compared to the one of the ’free’ collision is a hint to
a higher final energy density of the box. However, this is
not crucial for our investigation here, since an increase of
the size of the box would only lead to a lower collision rate
in the late collision stage and thus even increase the time
necessary for equilibration. As global equilibration ratio
for this box calculations we have averaged the individual
target/projectile ratios in each rapidity bin over all rapidi-
ties from −0.9 y0 to 0.9 y0 times sgn(y). The ’free’ fireball
lifetimes to compare with we define as the time interval
from the rise of the density in the center of the reaction
zone above ρ0 to the drop below 0.5ρ0 in a ’free’ collision.
This corresponds to the time period in which practically
all NN-collisions in a HIC happen as indicated by Fig. 4.

The results for both Au+Au and Ni+Ni are shown
in Fig. 5. All global ratios start from zero (since there
are no particles in the rapidity interval −0.9 < y < 0.9
initially) and reach a maximum between 5 and 10 fm/c.
The maximum possible value of the global ratio is 19.
Defining equilibration by the ratio ≤ 10% of the maxi-
mum, clearly the time needed to equilibrate is much longer
than the lifetime of the fireball at 150 and 400 AMeV for
both systems. On the other hand, equilibration is reached
for 197

79 Au + 197
79 Au at 1 AGeV but not for 58

28Ni + 58
28Ni
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Fig. 5. Global equilibrium ratio as a function
of time for systems evolving in a box with peri-
odic boundary conditions; Au+Au (l.h.s.) and
Ni+Ni (r.h.s.) in comparison to the fireball life-
times of the corresponding ’free’ collision (ver-
tical dotted lines)

at this energy. At 2 AGeV a negative ratio is observed
between t=8 and 15 fm/c, which is due to the strong re-
pulsion of the target and projectile matter in the dense
reaction zone. Since matter can not escape to the side due
to the boundary conditions imposed, a shock front runs
from the collision zone in opposite direction to the in-
streaming matter thus inverting their average direction of
motion. Less pronounced this happens also in a ’free’ reac-
tion as reflected by the negative ratio at 2 AGeV in Figs. 2
and 3.

In summarizing this section, we like to point out that
the main limiting factor for achieving projectile-target
equilibration in the energy region of 150 AMeV to 2 AGeV
is the number of inelastic NN-collisions per volume that
occur throughout a HIC. This collision number is again
limited by the lifetime of the fireball, given by the size of
the system, and the incident energy of the collision. We
find the decrease with bombarding energy to be stronger
than the increase of the overall reaction time when go-
ing to lower bombarding energies. On the other hand, the
relative influence of the nucleon potential increases with
decreasing energy. Here especially the momentum depen-
dence gives some additional stopping for the relative mo-
tion between target and projectile as compared to a pure
cascade or a density dependent (Skyrme) potential. How-
ever, even at 150 AMeV the collisions play the dominant
role for stopping.

3.2 Surface effects and dependence on centrality

In the previous section we have considered the ’true’ mix-
ture of the system by taking a tube around the beam
axis, thus excluding any surface effects. Experimentally,
however, only an overall equilibration is measurable and
one has to consider the influence of corona effects, which
means that the surfaces of the colliding nuclei pass each
other. Additionally, the results measured will be affected
by dominant contributions from non-central collisions

Fig. 6. Comparison between the ”true” equilibrium in a tube
along the z-axis (excluding surface effects) (solid line) and the
overall equilibrium for b=0, 1 and 2 fm collisions (dashed, dash-
dot and dotted line, respectively) for Au+Au at 0.4 AGeV

where spectator matter will spoil the signal of equilibra-
tion in the fireball. So the ability to determine central
events will be a crucial point experimentally. In the fol-
lowing we will therefore investigate both the effects of sur-
face contributions as well as criteria for centrality selection
on the signal for the Au+Au system, for which we could
extensively check the agreement of our results on multi-
plicity, transverse energy and directivity distributions to
experimental data at various energies [10,32].

Figure 6 shows the target to projectile ratio defined
in the last section for central, b=1 fm and b=2 fm colli-
sions in comparison to the ’true’ ratio along the beam axis,
determined in the cylinder geometry as explained in the
previous section. The b=0 overall ratio is, besides a dif-
ference at high rapidities, in very good agreement to the
true ratio; for b=1 fm the agreement is still acceptable.
Surface effects contribute mainly at y > ypr and are neg-
ligible for rapidities below 0.9y0. However, the centrality



82 A. Hombach et al.: Isospin equilibration in relativistic heavy-ion collisions

Fig. 7. The distribution in Erat for Au+Au at 400 AMeV. The
experimental data (squares) have been taken from [10] while
the CBUU results are given by the dotted line. Also shown are
the individual distributions for b=0.1, 1 and 2 fm collisions
from the CBUU calculations (solid, dashed and dash-dotted
line)

selection is crucial since already the b=2 fm results differ
substantially from the ’true’ signal. Since higher impact
parameters enter in an impact parameter integrated mea-
surement with higher statistical weight, we have checked
on experimental possibilities to suppress these.

A usual way to determine central events is given by
selecting events with a high transverse energy to longi-
tudinal energy ratio Erat as defined in (7), and applying
additional cuts in directivity

D =
|
∑
pt|∑
|pt|

, y > ycm , (8)

where the usual FOPI-Cuts of 70 ≤ Θlab ≤ 300 have to be
used.

Figure 7 shows the experimental Erat distribution for
Au+Au at 400 AMeV in comparison to the CBUU cal-
culations. Additionally, the CBUU distributions obtained
for b=0.1, b=1 and b=2 runs are shown separately. The
distributions of the individual impact parameters are very
broad and especially the b=2 fm impact parameter still
contributes substantially at high Erat. Thus for an event
sample with Erat > 1.2 we have applied additional cuts in
directivity, ranging from D < 0.02 to D < 0.3. The rela-
tive contributions of runs at different impact parameters
are shown in Fig. 8. It can clearly be seen that requiring
a narrow cut in D is an excellent way to select central
events, though contributions from b=2 fm runs cannot be
completely excluded. The latter we cannot quantify ex-
actly due to statistical uncertainties caused by the low
number of events surviving these strong cuts.

However, the systems should be taken as massive as
possible since corona effects increase with decreasing mass.
For the Au+Au system investigated in this subsection
they are negligible. Beyond this, when requiring suffi-
ciently low directivity D, it should be possible experimen-
tally to exclude non-central events and to measure a signal
very close to the ’true’ target−projectile mixture as dis-
cussed in the previous section.

Fig. 8. Contributions to different directivity bins of an event
sample with Erat > 1.2 for Au+Au at 400 AMeV

Fig. 9. Mass dependence of the target-projectile mixture.
Shown are target to projectile ratios vs. rapidity for Au+Au
(dashed), Ru+Zr (solid) and Ni+Ni (dotted)

4 The Ru+Zr system

Experimentally projectile and target nucleons are indis-
tinguishable. In order to gain information on the degree
of equilibration one can choose projectile − target combi-
nations of different isospin and evaluate the uniformness
of the isospin distribution at different rapidities. Experi-
ments are currently under consideration at the SIS, where
measurements with 96

44Ru and 96
40Zr at 400 AMeV and at

1.5 AGeV are being investigated.
The system Ru+Zr with a total mass number of 192

behaves more similar to the Ni+Ni system than to Au+Au
as shown in Fig. 9. For this system we have also first deter-
mined the target over projectile ratio since this quantity
is, first of all, numerically much more stable and, second,
direct proportional to the isospin ratio. For the two en-
ergies mentioned above, we have investigated the factors
influencing the mixing ratio and the dependence on vary-
ing these. The results are shown in Fig. 10. At 400 AMeV
(l.h.s.) we find the incompressibility K of the equation of
state (EOS) to be the dominant factor, even though the
dependence is not very strong. Close to the Ni+Ni system
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Fig. 10. Target to projectile ratio for the Ru+Zr sys-
tem for different energies of 400 AMeV (l.h.s.) and
1500 AMeV (r.h.s.). The upper plots show the influ-
ence of different equations of state while in the lower
plots the in-medium inelastic cross section is varied
by ±30%

discussed in Sect. 3.1, in the Ru+Zr system the number of
inelastic collisions is much too low at 400 AMeV for equi-
libration thus giving rise to a target/projectile ratio up to
0.6 at projectile rapidities. By increasing the compressibil-
ity one decreases the number of collisions even more; this
leads to an increase of the ratio and vice versa. Note that
when varying the inelastic cross section within reasonable
limits (±30%) negligible effects are found in this energy
regime which is essentially dominated by elastic processes.

At 1.5 AGeV the situation is different. Though an over-
all equilibration is again not reached here due to the small
number of collisions limited by the size and lifetime of the
fireball, the target to projectile ratio is close to zero up to
normalized rapidities y0 ' 0.6 and reaches its maximum
value of 0.4 at ypr. The incompressibility of nuclear matter
plays a minor role at these energies, whereas a variation
of the inelastic cross section changes the degree of equi-
libration by ≈ 10%. So in principle it could be possible
to determine in-medium cross sections and the EOS sepa-
rately by looking at the isospin equilibration at different
energies and system sizes.

For the charge or isospin ratio one has to consider
the shift of the total baryonic charge due to charged pion
production at higher energies. In order to normalize the
baryon charge ratio vs. rapidity to ±1 for Ru and Zr, re-
spectively, one has not to take the initial p/n-ratios of
≈0.85 for 96

44Ru and ≈0.71 for 96
40Zr, but the final ones

given by
Z−
∑
z

(π)
i

A−Z+
∑
z

(π)
i

, where
∑
i z

(π)
i denotes the sum over

the charges of the produced pions. For Ru and Zr this
yields approximately 0.90 and 0.81 in our calculation at
1.5 AGeV, respectively. The statistical uncertainties of our
calculation on the charge ratio – given not only by the
number of particles in each rapidity bin but also by the
statistical uncertainty of the charged pion number – are
shown in Fig. 11. These fluctuations blur the difference
between the 400 AMeV and the 1.5 AGeV curve shown in
Fig. 12, which should closely follow the respective lines in
Fig. 10. However, experimentally it should be possible to
determine the charge ratios with sufficient accuracy.

Fig. 11. Charge ratios vs. rapidity for Ru+Ru (solid lines)
and Zr+Zr (dashed lines) collisions at 400 AMeV (upper panel)
and 1500 AMeV (lower panel)

5 Summary

In this paper we have explored the possibility to deter-
mine the degree of target/projectile equilibration via the
measurement of isospin ratios vs. rapidity in the final
state of HICs of isospin asymmetric systems. The analysis
has been performed within the coupled-channel (CBUU)
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Fig. 12. Charge ratios vs. rapidity for Zr+Ru collisions at
400 AMeV (solid line) and 1500 AMeV (dashed line)

transport approach which has proven in [14,30] to ade-
quately describe pion spectra as well as baryon flow in the
SIS energy regime [33]. In our calculations the isospin de-
pendence of both the inelastic and elastic scattering cross
section is taken into account, as well as an isospin depen-
dent mean-field potential. However, in the energy range
considered here the influence of the isospin asymmetric
potential term is negligible as well as a separate consider-
ation of Pauli blocking for protons and neutrons.

We find that full equilibration is practically never
achieved even in central collisions of Au + Au. This is
due to the fact that elastic collisions at lower energy
(≤ 400 AMeV) are not very effective for baryon stop-
ping due to forward peaked angular distributions. Inelastic
baryon excitations help very much for equilibration such
that central Au+Au collisions at 1 AGeV show an ap-
proximate equilibration. This is due to the fact that the
lifetime of the fireball is sufficiently long as compared to an
equilibration time evaluated for a related infinite nuclear
matter problem within the CBUU approach. For Ni+Ni
we find no full equilibration at all bombarding energies
considered here.

We have shown explicitly the influence of surface ef-
fects and examined criteria for centrality selection on the
equilibration signature. As result, it should be possible,
when selecting central events carefully, to achieve experi-
mentally a signal at least close to the ’true’ equilibration
of the system, i.e. the equilibrium in that region where the
centers of the colliding nuclei are located.

In addition, it has been shown that the incompressi-
bility K of the EOS modifies the signal at lower energies
somewhat, whereas medium modifications of the cross sec-
tion dominantly influence the signal at high bombarding
energy. Thus in principle it might be possible to deter-
mine the EOS and the medium modifications of the in-
elastic cross section independently by N/Z ratios vs. ra-
pidity in very central collisions of different systems at e.g.
400 AMeV and 1.5 AGeV. For a determination of the EOS
light systems should be used since the short lifetime of
the fireball limits the number of inelastic collisions. One
promising system could be 48Ca+50Cr as proposed in [4].
On the other hand, the determination of changes in the in-

medium cross section does not require very heavy systems
in the mass region of 197

79 Au + 197
79 Au . These equilibrate

anyhow in the energy regime of ≈ 1 AGeV and thus are
insensitive to minor changes (± 30%) of the inelastic cross
section. In this sense the Ru+Zr system is promising in
yielding results limiting both the variety of the compress-
ibility of the EOS and the in-medium cross sections.
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1. H. Stöcker and W. Greiner, Phys. Rep. 137 (1986) 277
2. W. Cassing and U. Mosel, Prog. Part. Nucl. Phys. 25

(1990) 235
3. J. Aichelin, Phys. Rep. 202 (1991) 233
4. S. Bass et al., Prog. Part. Nucl. Phys. 41 (1998) 225
5. C. M. Ko and G. Q. Li, J. Phys. G: Nucl. Part. Phys. 22

(1996) 1673
6. W. Cassing and E. L. Bratkovskaya, Phys. Rep. 308 (1999)

65
7. P. Braun-Munzinger, J. Stachel, J. P. Wessels, and N. Xu,

Phys. Lett. B 344 (1995) 43; B 365 (1996) 1
8. W. Reisdorf, Ann. Rev. Nucl. Part. Sci. 47 (1997) 1
9. Y. Leifels et al., GSI report 1/98 (1998) 57

10. W. Reisdorf et al., Nucl. Phys. A 612 (1997) 493
11. W. Reisdorf, Nucl. Phys. A 630 (1998) 15c
12. J. F. Dempsey et al., Phys. Rev. C 54 (1996) 1710; G. J.

Kunde et al., Phys. Rev. Lett. 77 (1996) 2897
13. B. A. Li, C. M. Ko and W. Bauer, Int. J. Mod. Phys. E 7

(1998) 147
14. S. Teis, W. Cassing, M. Effenberger, A. Hombach, U. Mosel

and Gy. Wolf, Z. Phys. A 356 (1997) 421
15. G. F. Bertsch and S. Das Gupta, Phys. Rep. 160 (1988)

189
16. W. Cassing, K. Niita and S.J. Wang, Z. Phys. A 331

(1988) 439
17. W. Cassing, V. Metag, U. Mosel and K. Niita, Phys. Rep

188 (1990) 363
18. K. Weber, B. Blättel, W. Cassing, H.-C. Dönges, V. Koch,
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